lisc. Questions

Base your answers to questions 1 through 5 on the diagram below hich represents a planet, P, in an elliptical orbit around a star \mathcal{L} cated at F_1 . The foci of the elliptical orbit are F_1 and F_2 . Orbital locations are represented by P_1 through P_6 .

- 1. If the mass of planet P were tripled, the gravitational force between the star and planet P would
 - 1) remain the same
- 3) be three times greater
- be two times greater
- 4) be nine times greater
- 2. The gravitational attraction between planet P and the star is greatest when the planet is located at position

1) P_1 2) P_2

- 3. When observed from the planet, the star would have its greatest apparent angular diameter when the planet is located at position

2) P_{2}

- 4. What is the approximate eccentricity of planet *P*'s orbit?
 - 1) 0.52

3) 2.11

2) 0.83

4) 4.47

- 5. If the shaded portions of the orbital plane are equal in area, the time period between P_1 and P_2 will be equal to the time period between
 - P₂ and P₃
 P₄ and P₅
- 3) P₃ and P₄
 4) P₆ and P₁

- 6. Why are impact structures (craters) more common on the surface of Mars than on the surfaces of Venus, Earth, and Jupiter?
 - Mars has the greatest surface area and receives more
 - The tiny moons of Mars are breaking into pieces and showering its surface with rock fragments.
 - Mars has a strong magnetic field that attracts ironcontaining rock fragments from space.
 - The thin atmosphere of Mars offers little protection against falling rock fragments from space.
- 7. The giant planets are composed primarily of
 - hydrogen and helium
- carbon dioxide
- 4) rocky materials
- 8. Which statement best describes galaxies?
 - They are similar in size to the solar system.
 - They contain only one star but hundreds of planets.
 - They may contain a few hundred stars in a space slightly larger than the solar system.
 - They may contain billions of stars in a space much larger than our solar system.
- 9. According to the big bang theory, the universe began as an explosion and is still expanding. This theory is supported by observations that the stellar spectra of distant galaxies show a
 - concentration in the yellow portion of the spectrum 1)
 - concentration in the green portion of the spectrum
 - shift toward the blue end of the spectrum 3)
 - shift toward the red end of the spectrum

10. The diagram below shows a standard spectrum compared to a spectrum produced from a distant star.

Standard Spectrum

Spectrum from Distant Star

Which conclusion can be made by comparing the standard spectrum to the spectrum produced from this distant star?

- 1) The star's spectral lines have shifted toward the ultraviolet end of the spectrum and the star is moving toward Earth.
- The star's spectral lines have shifted toward the ultraviolet end of the spectrum and the star is moving away from Earth.
- 3) The star's spectral lines have shifted toward the infrared end of the spectrum and the star is moving toward Earth.
- 4) The star's spectral lines have shifted toward the infrared end of the spectrum and the star is moving away from Earth.

- 11. Most of the radiant energy released by the sun results from the process of
 - nuclear fission
- 3) combustion
- nuclear fusion
- 4) electrical generation
- 12. Stars are believed to undergo evolutionary changes over millions of years. The flowchart below shows stages of predicted changes in the Sun.

According to this flowchart, the Sun will become

- 1) hotter and brighter in stage 2, then cooler and dimmer in stage 3
- 2) cooler and dimmer in stage 2, then hotter and brighter in stage 3
- 3) hotter and dimmer in stage 2, then cooler and brighter in stage 3
- 4) cooler and brighter in stage 2, then hotter and dimmer in stage 3

Answer Key [New Exam]

- 1. __3___
- 2. ___2___
- 3. ___2___
- 4. __1__
- 5. **2** 3
- 6. __4__
- 7. __1__
- 8. ___4___
- 9. ___4___
- 10. ___4___
- 11. ___2___
- 12. ___4___